
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effects of temperature and pH on growth and antioxidant content of the microalga Scenedesmus obliquus

doi: 10.1002/btpr.649
pmid: 21648102
AbstractReactive forms of oxygen can damage DNA (among other molecules), thus triggering, e.g., atherogenesis and carcinogenesis. However, such dietary antioxidants as lutein and β‐carotene can effectively inactivate them; these compounds were found to high levels in a novel strain (M2‐1) of the microalga Scenedesmus obliquus. The independent and combined effects of pH and temperature on its rates of growth and production of antioxidants were experimentally assessed, via a full factorial experimental design; the effects of each parameter independently, and of their interactions were accordingly quantified by ANOVA. Our results indicated that temperature plays a more important role on the maximum specific growth rate than pH; in terms of antioxidant content, pH and, to a lesser extent, temperature also have relevant effects. Consequently, the highest rate of biomass specific growth (0.294 ± 0.013 day−1) and biomass productivity (0.837 ± 0.054 mg L−1 day−1) were associated with relatively low pH (6) and relatively high temperature (30°C). Conversely, the antioxidant production rate increased with pH; hence, the highest productivity (0.638 mg L−1 day−1) was attained at pH 8 and 30°C. At the best operating conditions for antioxidant content, the levels of lutein and β‐carotene were 203.57 ± 1.41 and 18.20 ± 0.33 mg mL−1, respectively; the maximum production of either one occurred at the early exponential phase. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011
- Catholic University of Portugal Portugal
- University of Porto Portugal
- Universidade Católica Portuguesa Portugal
- Instituto Superior da Maia Portugal
- Instituto Superior da Maia Portugal
Lutein, Temperature, Assay, Photobioreactor, Hydrogen-Ion Concentration, Antioxidants, β-carotene, Microalgae, ABTS, Biomass, Scenedesmus
Lutein, Temperature, Assay, Photobioreactor, Hydrogen-Ion Concentration, Antioxidants, β-carotene, Microalgae, ABTS, Biomass, Scenedesmus
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).87 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
