Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Carbon Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Carbon Energy
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Carbon Energy
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Carbon Energy
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hierarchically mesoporous carbon spheres coated with a single atomic Fe–N–C layer for balancing activity and mass transfer in fuel cells

Authors: Chengyong Shu; Qiang Tan; Chengwei Deng; Wei Du; Zhuofan Gan; Yan Liu; Chao Fan; +5 Authors

Hierarchically mesoporous carbon spheres coated with a single atomic Fe–N–C layer for balancing activity and mass transfer in fuel cells

Abstract

AbstractNovel cost‐effective fuel cells have become more attractive due to the demands for rare and expensive platinum‐group metal (PGM) catalysts for mitigating the sluggish kinetics of the oxygen reduction reaction (ORR). The high‐cost PGM catalyst in fuel cells can be replaced by Earth‐abundant transition‐metal‐based catalysts, that is, an Fe–N–C catalyst, which is considered one of the most promising alternatives. However, the performance of the Fe–N–C catalyst is hindered by the low catalytic activity and poor stability, which is caused by insufficient active sites and the lack of optimization of the triple‐phase interface for mass transportation. Herein, a novel Fe–N–C catalyst consisting of mono‐dispersed hierarchically mesoporous carbon sphere cores and single Fe atom‐dispersed functional shells are presented. The synergistic effect between highly dispersed Fe‐active sites and well‐organized porous structures yields the combination of high ORR activity and high mass transfer performance. The half‐wave potential of the catalyst in 0.1 M H2SO4 is 0.82 V versus reversible hydrogen electrode, and the peak power density is 812 mW·cm−2 in H2–O2 fuel cells. Furthermore, it shows superior methanol tolerance, which is almost immune to methanol poisoning and generates up to 162 mW·cm−2 power density in direct methanol fuel cells.

Keywords

fuel cell, oxygen reduction reaction, TK1001-1841, Production of electric energy or power. Powerplants. Central stations, hierarchically mesoporous carbon spheres, single‐atom catalysts

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 1%
Top 10%
Top 1%
gold
Related to Research communities
Energy Research