
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Progress and perspectives on electrospinning techniques for solid‐state lithium batteries

doi: 10.1002/cey2.180
AbstractSolid‐state electrolytes (SSEs), being the key component of solid‐state lithium batteries, have a significant impact on battery performance. Rational materials structure and composition engineering on SSEs are promising to improve their Li+ conductivity, interfacial contact, and mechanical integrity. Among the fabrication approaches, the electrospinning technique has attracted tremendous attention due to its own merits in constructing a three‐dimensional framework of SSEs with precise porosity structure, tunable materials composition, easy operation, and superior physicochemical properties. To this end, in this review, we provide a comprehensive summary of the recent development of electrospinning techniques for high‐performance SSEs. Firstly, we introduce the historical development of SSEs and summarize the fundamentals, including the Li+ transport mechanism and materials selection principle. Then, the versatility of electrospinning technologies in the construction of the three main types of SSEs and stabilization of lithium metal anodes is comprehensively discussed. Finally, a perspective on future research directions based on previous work is highlighted for developing high‐performance solid‐state lithium batteries based on electrospinning techniques.
- University of Macau Macao
- Fuzhou University China (People's Republic of)
- Wuhan Polytechnic University China (People's Republic of)
- Fuzhou University China (People's Republic of)
- Wuhan University of Science and Technology China (People's Republic of)
TK1001-1841, solid‐state batteries, lithium metal anode, Production of electric energy or power. Powerplants. Central stations, nanofibers, electrospinning
TK1001-1841, solid‐state batteries, lithium metal anode, Production of electric energy or power. Powerplants. Central stations, nanofibers, electrospinning
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).44 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
