Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of East A...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Carbon Energy
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Carbon Energy
Article . 2022
Data sources: DOAJ
https://dx.doi.org/10.60692/f5...
Other literature type . 2022
Data sources: Datacite
https://dx.doi.org/10.60692/b1...
Other literature type . 2022
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Synergistically boosting the elementary reactions over multiheterogeneous ordered macroporous Mo2C/NC‐Ru for highly efficient alkaline hydrogen evolution

تعزيز التفاعلات الأولية بشكل تآزري على التفاعلات متعددة غير المتجانسة الكبيرة المسامية Mo2C/NC-Ru لتطور الهيدروجين القلوي عالي الكفاءة
Authors: Kaixi Wang; Shuo Wang; Kwan San Hui; Haixing Gao; Duc Anh Dinh; Cheng‐Zong Yuan; Chenyang Zha; +3 Authors

Synergistically boosting the elementary reactions over multiheterogeneous ordered macroporous Mo2C/NC‐Ru for highly efficient alkaline hydrogen evolution

Abstract

AbstractSimultaneously enhancing the reaction kinetics, mass transport, and gas release during alkaline hydrogen evolution reaction (HER) is critical to minimizing the reaction polarization resistance, but remains a big challenge. Through rational design of a hierarchical multiheterogeneous three‐dimensionally (3D) ordered macroporous Mo2C‐embedded nitrogen‐doped carbon with ultrafine Ru nanoclusters anchored on its surface (OMS Mo2C/NC‐Ru), we realize both electronic and morphologic engineering of the catalyst to maximize the electrocatalysis performance. The formed Ru‐NC heterostructure shows regulative electronic states and optimized adsorption energy with the intermediate H*, and the Mo2C‐NC heterostructure accelerates the Volmer reaction due to the strong water dissociation ability as confirmed by theoretical calculations. Consequently, superior HER activity in alkaline solution with an extremely low overpotential of 15.5 mV at 10 mA cm−2 with the mass activity more than 17 times higher than that of the benchmark Pt/C, an ultrasmall Tafel slope of 22.7 mV dec−1, and excellent electrocatalytic durability were achieved, attributing to the enhanced mass transport and favorable gas release process endowed from the unique OMS Mo2C/NC‐Ru structure. By oxidizing OMS Mo2C/NC‐Ru into OMS MoO3‐RuO2 catalyst, it can also be applied as efficient oxygen evolution electrocatalyst, enabling the construction of a quasi‐symmetric electrolyzer for overall water splitting. Such a device's performance surpassed the state‐of‐the‐art Pt/C || RuO2 electrolyzer. This study provides instructive guidance for designing 3D‐ordered macroporous multicomponent catalysts for efficient catalytic applications.

Country
United Kingdom
Keywords

ruthenium nanoparticle, TK1001-1841, Photocatalytic Materials for Solar Energy Conversion, Electrode, Hydrogen Production, Biochemistry, Engineering, synergistic effect, Electrolyte, Materials Chemistry, Electrochemistry, Nanotechnology, Water splitting, Tafel equation, Energy, Nanoclusters, ordered macroporous structure, Hydrogen Evolution, Chemistry, Physical chemistry, Physical Sciences, molybdenum carbide, Oxygen evolution, Inorganic chemistry, Overpotential, Two-Dimensional Transition Metal Carbides and Nitrides (MXenes), Materials Science, Catalysis, Electrolysis, Production of electric energy or power. Powerplants. Central stations, Chemical engineering, Photocatalysis, FOS: Chemical engineering, FOS: Nanotechnology, 660, Renewable Energy, Sustainability and the Environment, CO2 Reduction, heterostructure, Electrocatalyst, 540, Materials science, hydrogen evolution reaction, Electrocatalysis for Energy Conversion, Electrocatalysis, Alkaline water electrolysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 1%
Green
gold