
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
COF‐based single Li+ solid electrolyte accelerates the ion diffusion and restrains dendrite growth in quasi‐solid‐state organic batteries

doi: 10.1002/cey2.248
AbstractA solid‐state electrolyte (SSE), which is a solid ionic conductor and electron‐insulating material, is known to play a crucial role in adapting a lithium metal anode to a high‐capacity cathode in a solid‐state battery. Among the various SSEs, the single Li‐ion conductor has advantages in terms of enhancing the ion conductivity, eliminating interfacial side reactions, and broadening the electrochemical window. Covalent organic frameworks (COFs) are optimal platforms for achieving single Li‐ion conduction behavior because of well‐ordered one‐dimensional channels and precise chemical modification features. Herein, we study in depth three types of Li‐carboxylate COFs (denoted LiOOC‐COFn, n = 1, 2, and 3) as single Li‐ion conducting SSEs. Benefiting from well‐ordered directional ion channels, the single Li‐ion conductor LiOOC‐COF3 shows an exceptional ion conductivity of 1.36 × 10−5 S cm−1 at room temperature and a high transference number of 0.91. Moreover, it shows excellent electrochemical performance with long‐term cycling, high‐capacity output, and no dendrites in the quasi‐solid‐state organic battery, with the organic small molecule cyclohexanehexone (C6O6) as the cathode and the Li metal as the anode, and enables effectively avoiding dissolution of the organic electrode by the liquid electrolyte.
- Yunnan Open University China (People's Republic of)
- Yangtze Normal University China (People's Republic of)
- Yunnan Open University China (People's Republic of)
- Yangtze Normal University China (People's Republic of)
TK1001-1841, quasi‐solid‐state organic battery, solid‐state electrolyte, single Li‐ion conductor, Production of electric energy or power. Powerplants. Central stations, covalent organic frameworks
TK1001-1841, quasi‐solid‐state organic battery, solid‐state electrolyte, single Li‐ion conductor, Production of electric energy or power. Powerplants. Central stations, covalent organic frameworks
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).48 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
