Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Carbon Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Carbon Energy
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Carbon Energy
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Long‐lasting, reinforced electrical networking in a high‐loading Li2S cathode for high‐performance lithium–sulfur batteries

Authors: Hun Kim; Kyeong‐Jun Min; Sangin Bang; Jang‐Yeon Hwang; Jung Ho Kim; Chong S. Yoon; Yang‐Kook Sun;

Long‐lasting, reinforced electrical networking in a high‐loading Li2S cathode for high‐performance lithium–sulfur batteries

Abstract

AbstractRealizing a lithium sulfide (Li2S) cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration. Herein, a high‐loading Li2S‐based cathode with micrometric Li2S particles composed of two‐dimensional graphene (Gr) and one‐dimensional carbon nanotubes (CNTs) in a compact geometry is developed, and the role of CNTs in stable cycling of high‐capacity Li–S batteries is emphasized. In a dimensionally combined carbon matrix, CNTs embedded within the Gr sheets create robust and sustainable electron diffusion pathways while suppressing the passivation of the active carbon surface. As a unique point, during the first charging process, the proposed cathode is fully activated through the direct conversion of Li2S into S8 without inducing lithium polysulfide formation. The direct conversion of Li2S into S8 in the composite cathode is ubiquitously investigated using the combined study of in situ Raman spectroscopy, in situ optical microscopy, and cryogenic transmission electron microscopy. The composite cathode demonstrates unprecedented electrochemical properties even with a high Li2S loading of 10 mg cm–2; in particular, the practical and safe Li–S full cell coupled with a graphite anode shows ultra‐long‐term cycling stability over 800 cycles.

Country
Australia
Related Organizations
Keywords

lithium–sulfur batteries, TK1001-1841, high energy, carbon nanotubes, Li S cathode 2, electrical network, Li2S cathode, 600, lithium–sulfur batteries, Production of electric energy or power. Powerplants. Central stations, high loading

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%
gold
Related to Research communities
Energy Research