
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Long‐lasting, reinforced electrical networking in a high‐loading Li2S cathode for high‐performance lithium–sulfur batteries

doi: 10.1002/cey2.308
AbstractRealizing a lithium sulfide (Li2S) cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration. Herein, a high‐loading Li2S‐based cathode with micrometric Li2S particles composed of two‐dimensional graphene (Gr) and one‐dimensional carbon nanotubes (CNTs) in a compact geometry is developed, and the role of CNTs in stable cycling of high‐capacity Li–S batteries is emphasized. In a dimensionally combined carbon matrix, CNTs embedded within the Gr sheets create robust and sustainable electron diffusion pathways while suppressing the passivation of the active carbon surface. As a unique point, during the first charging process, the proposed cathode is fully activated through the direct conversion of Li2S into S8 without inducing lithium polysulfide formation. The direct conversion of Li2S into S8 in the composite cathode is ubiquitously investigated using the combined study of in situ Raman spectroscopy, in situ optical microscopy, and cryogenic transmission electron microscopy. The composite cathode demonstrates unprecedented electrochemical properties even with a high Li2S loading of 10 mg cm–2; in particular, the practical and safe Li–S full cell coupled with a graphite anode shows ultra‐long‐term cycling stability over 800 cycles.
- Chonnam National University Korea (Republic of)
- Hanyang University Korea (Republic of)
- University of Wollongong Australia
- Hanyang University Korea (Republic of)
- University of Wollongong Australia
lithium–sulfur batteries, TK1001-1841, high energy, carbon nanotubes, Li S cathode 2, electrical network, Li2S cathode, 600, lithium–sulfur batteries, Production of electric energy or power. Powerplants. Central stations, high loading
lithium–sulfur batteries, TK1001-1841, high energy, carbon nanotubes, Li S cathode 2, electrical network, Li2S cathode, 600, lithium–sulfur batteries, Production of electric energy or power. Powerplants. Central stations, high loading
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).21 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
