Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemistry - A Europe...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemistry - A European Journal
Article . 2006 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2006
Data sources: IRIS Cnr
CNR ExploRA
Article . 2006
Data sources: CNR ExploRA
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Versatile Bis‐Porphyrin Tweezer Host for the Assembly of Noncovalent Photoactive Architectures: A Photophysical Characterization of the Tweezers and Their Association with Porphyrins and Other Guests

Authors: L Flamigni; A M Talarico; B Ventura; R Rein; N Solladié;

A Versatile Bis‐Porphyrin Tweezer Host for the Assembly of Noncovalent Photoactive Architectures: A Photophysical Characterization of the Tweezers and Their Association with Porphyrins and Other Guests

Abstract

AbstractA bis(ZnII–porphyrin) tweezer host with anthracene components as apex and side‐arms has been synthesized. Mono‐ (pyridine) and bidentate (4,4′‐bipyridine) guests were used as models for single and double axial coordination inside the cavity, respectively. A series of dipyridylporphyrin guests with different substitution patterns and excited‐state energy levels have association constants with the tweezers that are of the order of 106 M−1, which is indicative of complexation with the inside of the cavity. This complexation can only occur upon an important distortion of the cavity that opens the bite by about 30 %. This characteristic, in conjunction with their ability to reduce the bite distance by rotation around single bonds, makes these porphyrin tweezers amongst the most versatile so far reported, with tuning of the bite distance in the range of approximately 5–20 Å. Energy transfer to the free‐base guest within the triporphyrin complex is nearly quantitative (95–98 %) and the rates of transfer are consistent with a Förster mechanism that is characterized by a reduced orientation factor.

Country
Italy
Keywords

Anthracenes, energy transfer, Molecular Structure, Metalloporphyrins, Photochemistry, porphyrinoids, self-assembly, supramolecular chemistry, Zinc, Energy Transfer, Models, Chemical, luminescence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    73
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
73
Top 10%
Top 10%
Top 10%
Related to Research communities
Energy Research