Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemistry - A Europe...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemistry - A European Journal
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Photoinduced Energy and Electron Transfer in Phenylethynyl‐Bridged Zinc Porphyrin–Oligothienylenevinylene–C60 Ensembles

Authors: Kei Ohkubo; D.-M. Shafiqul Islam; Shunichi Fukuzumi; Shunichi Fukuzumi; Fernando Langa; Maxence Urbani;

Photoinduced Energy and Electron Transfer in Phenylethynyl‐Bridged Zinc Porphyrin–Oligothienylenevinylene–C60 Ensembles

Abstract

AbstractDonor–bridge–acceptor triad (Por‐2TV‐C60) and tetrad molecules ((Por)2‐2TV‐C60), which incorporated C60 and one or two porphyrin molecules that were covalently linked through a phenylethynyl‐oligothienylenevinylene bridge, were synthesized. Their photodynamics were investigated by fluorescence measurements, and by femto‐ and nanosecond laser flash photolysis. First, photoinduced energy transfer from the porphyrin to the C60 moiety occurred rather than electron transfer, followed by electron transfer from the oligothienylenevinylene to the singlet excited state of the C60 moiety to produce the radical cation of oligothienylenevinylene and the radical anion of C60. Then, back‐electron transfer occurred to afford the triplet excited state of the oligothienylenevinylene moiety rather than the ground state. Thus, the porphyrin units in (Por)‐2TV‐C60 and (Por)2‐2TV‐C60 acted as efficient photosensitizers for the charge separation between oligothienylenevinylene and C60.

Keywords

Models, Molecular, Magnetic Resonance Spectroscopy, Vinyl Compounds, Molecular Structure, Metalloporphyrins, Carboxylic Acids, Thiophenes, Electron Transport, Zinc, Energy Transfer, Fullerenes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Average
Average
Top 10%
Related to Research communities
Energy Research