Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemistry - A Europe...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemistry - A European Journal
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Near‐IR Excitation Transfer and Electron Transfer in a BF2‐Chelated Dipyrromethane–Azadipyrromethane Dyad and Triad

Authors: Mohamed E. El-Khouly; Melvin E. Zandler; Francis D'Souza; Francis D'Souza; Shunichi Fukuzumi; Shunichi Fukuzumi; Anu N. Amin;

Near‐IR Excitation Transfer and Electron Transfer in a BF2‐Chelated Dipyrromethane–Azadipyrromethane Dyad and Triad

Abstract

AbstractA molecular dyad and triad, comprised of a known photosensitizer, BF2‐chelated dipyrromethane (BDP), covalently linked to its structural analog and near‐IR emitting sensitizer, BF2‐chelated tetraarylazadipyrromethane (ADP), have been newly synthesized and the photoinduced energy and electron transfer were examined by femtosecond and nanosecond laser flash photolysis. The structural integrity of the newly synthesized compounds has been established by spectroscopic, electrochemical, and computational methods. The DFT calculations revealed a molecular‐clip‐type structure for the triad, in which the BDP and ADP entities are separated by about 14 Å with a dihedral angle between the fluorophores of around 70°. Differential pulse voltammetry studies have revealed the redox states, allowing estimation of the energies of the charge‐separated states. Such calculations revealed a charge separation from the singlet excited BDP (1BDP*) to ADP (BDP.+‐ADP.−) to be energetically favorable in nonpolar toluene and in polar benzonitrile. In addition, the excitation transfer from the singlet BDP to ADP is also envisioned due to good spectral overlap of the BDP emission and ADP absorption spectra. Femtosecond laser flash photolysis studies provided concrete evidence for the occurrence of energy transfer from 1BDP* to ADP (in benzonitrile and toluene) and electron transfer from BDP to 1ADP* (in benzonitrile, but not in toluene). The kinetic study of energy transfer was measured by monitoring the rise of the ADP emission and revealed fast energy transfer (ca. 1011 s−1) in these molecular systems. The kinetics of electron transfer via 1ADP*, measured by monitoring the decay of the singlet ADP at λ=820 nm, revealed a relatively fast charge‐separation process from BDP to 1ADP*. These findings suggest the potential of the examined ADP–BDP molecules to be efficient photosynthetic antenna and reaction center models.

Country
United States
Keywords

Boron Compounds, Models, Molecular, Aza Compounds, Spectroscopy, Near-Infrared, Near-IR emitters, Photochemistry, 540, 541, Electron transfer, Electron Transport, Kinetics, Energy transfer, Chelates, Electrochemistry, Pyrroles, Donor-acceptor systems, Chelating Agents

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research