Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Utrecht University R...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemistry - A European Journal
Article . 2013 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Single‐Particle Spectroscopy on Large SAPO‐34 Crystals at Work: Methanol‐to‐Olefin versus Ethanol‐to‐Olefin Processes

Methanol-to-Olefin versus Ethanol-to-Olefin Processes
Authors: Qian, Qingyun; Ruiz-Martinez, Javier; Mokhtar, Mohamed; Asiri, Abdullah M.; Al-Thabaiti, Shaeel A.; Basahel, Suliman N.; van der Bij, Hendrik E.; +2 Authors

Single‐Particle Spectroscopy on Large SAPO‐34 Crystals at Work: Methanol‐to‐Olefin versus Ethanol‐to‐Olefin Processes

Abstract

AbstractThe formation of hydrocarbon pool (HCP) species during methanol‐to‐olefin (MTO) and ethanol‐to‐olefin (ETO) processes have been studied on individual micron‐sized SAPO‐34 crystals with a combination of in situ UV/Vis, confocal fluorescence, and synchrotron‐based IR microspectroscopic techniques. With in situ UV/Vis microspectroscopy, the intensity changes of the λ=400 nm absorption band, ascribed to polyalkylated benzene (PAB) carbocations, have been monitored and fitted with a first‐order kinetics at low reaction temperatures. The calculated activation energy (Ea) for MTO, approximately 98 kJ mol−1, shows a strong correlation with the theoretical values for the methylation of aromatics. This provides evidence that methylation reactions are the rate‐determining steps for the formation of PAB. In contrast for ETO, the Ea value is approximately 60 kJ mol−1, which is comparable to the Ea values for the condensation of light olefins into aromatics. Confocal fluorescence microscopy demonstrates that during MTO the formation of the initial HCP species are concentrated in the outer rim of the SAPO‐34 crystal when the reaction temperature is at 600 K or lower, whereas larger HCP species are gradually formed inwards the crystal at higher temperatures. In the case of ETO, the observed egg‐white distribution of HCP at 509 K suggests that the ETO process is kinetically controlled, whereas the square‐shaped HCP distribution at 650 K is indicative of a diffusion‐controlled process. Finally, synchrotron‐based IR microspectroscopy revealed a higher degree of alkylation for aromatics for MTO as compared to ETO, whereas high reaction temperatures favor dealkylation processes for both the MTO and ETO processes.

Country
Netherlands
Keywords

Hot Temperature, Microscopy, Confocal, Alkylation, Ethanol, Methanol, Alkenes, Olefins, Kinetics, Alcohols, Zeolites, Crystallization, Microspectroscopy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 10%
Top 10%
Top 10%
Green
Related to Research communities
Energy Research