Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2017
Data sources: CNR ExploRA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemistry - A European Journal
Article . 2017 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2017
Data sources: IRIS Cnr
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Efficient Photoinduced Energy and Electron Transfer in ZnII–Porphyrin/Fullerene Dyads with Interchromophoric Distances up to 2.6 nm and No Wire‐like Connectivity

Authors: John Mohanraj; Andrea Barbieri; Nicola Armaroli; María Vizuete; Fernando Langa; Béatrice Delavaux‐Nicot; Maida Vartanian; +3 Authors

Efficient Photoinduced Energy and Electron Transfer in ZnII–Porphyrin/Fullerene Dyads with Interchromophoric Distances up to 2.6 nm and No Wire‐like Connectivity

Abstract

AbstractThe dyads 1–3 made of an alkynylated ZnII–porphyrin and a bis‐methanofullerene derivative connected through a copper‐catalyzed azide–alkyne cycloaddition have been synthesized. The porphyrin and fullerene chromophores are separated through a bridge made of a bismethanofullerene tether linked to different spacers conjugated to the porphyrin moiety [i.e., m‐phenylene (1), p‐phenylene (2), di‐p‐phenylene‐ethynylene (3)]. Compounds 1–3 exhibit relatively rigid structures with an interchromophoric separation of 1.7, 2.0, and 2.6 nm, respectively, and no face‐to‐face or direct through‐bond conjugation. The photophysical properties of compounds 1–3 have been investigated in toluene and benzonitrile with steady‐state and time‐resolved techniques as well as model calculations on the Förster energy transfer. Excited‐state interchromophoric electronic interactions are observed with a distinct solvent and distance dependence. The latter effect is evidenced in benzonitrile, where compounds 1 and 2 exhibit a photoinduced electron transfer in the Marcus‐inverted region, with charge‐separated (CS) states living for 0.44 and 0.59 μs, respectively, whereas compound 3 only undergoes energy transfer, as in apolar toluene. The quantum yield of the charge separation (φCS) of compounds 1 and 2 in benzonitrile is ≥0.75. It is therefore demonstrated that photoinduced energy and electron transfers in porphyrin–fullerene systems with long interchromophoric distances may efficiently occur also when the bridge does not provide a wire‐like conjugation and proceed through the triplet states of the chromophoric moieties.

Country
Italy
Keywords

energy transfer, Luminescence, [CHIM.ORGA]Chemical Sciences/Organic chemistry, Porphyrinoids, fullerenes, porphyrinoids, [CHIM.MATE]Chemical Sciences/Material chemistry, electron transfer, Electron transfer, Energy transfer, luminescence, [CHIM]Chemical Sciences, [CHIM.COOR]Chemical Sciences/Coordination chemistry, Fullerenes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Related to Research communities
Energy Research