
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Interactions between Ketones and Alcohols: Rotational Spectrum and Internal Dynamics of the Acetone–Ethanol Complex

AbstractThe rotational spectra of two isotopologues of the 1:1 complex formed between acetone and ethanol have been recorded and analyzed by using Fourier‐transform microwave spectroscopy. One rotamer was detected, in which ethanol adopts the gauche form. The two subunits are linked by a conventional O−H⋅⋅⋅O and a weak C−H⋅⋅⋅O hydrogen bond, forming a six‐membered ring. Each rotational transition is split into five component lines due to the internal rotations of two nonequivalent acetone methyl groups. The V3 barriers to internal rotation of the two CH3 tops of acetone were determined to be 252(4) and 220(1) cm−1, which are noticeably lower than the value for the monomer (266 cm−1).
- Chongqing University China (People's Republic of)
- Institute of Nanostructured Materials Italy
- Chongqing University China (People's Republic of)
- Max Planck Society Germany
- Alma Mater Studiorum University of Bologna Italy
rotational spectroscopy, hydrogen bonds, acetone, ethanol, molecular dynamics
rotational spectroscopy, hydrogen bonds, acetone, ethanol, molecular dynamics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).10 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
