Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biblioteca Digital d...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chirality
Article . 2011 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Chirality
Article . 2011
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Chiral separation of flurbiprofen enantiomers by preparative and simulated moving bed chromatography

Authors: Ribeiro, António E.; Gomes, Pedro Sá; Pais, Luís S.; Rodrigues, Alírio;

Chiral separation of flurbiprofen enantiomers by preparative and simulated moving bed chromatography

Abstract

AbstractThis study presents the chiral resolution of flurbiprofen enantiomers by preparative liquid chromatography using the simulated moving bed (SMB) technology. Flurbiprofen enantiomers are widely used as nonsteroidal anti‐inflammatory drugs, and although demonstrate different therapeutic actions, they are still marketed as a racemic mixture. The results presented here clearly show the importance of the selection of the proper solvent composition for the preparative separation of flurbiprofen enantiomers. Chiral SMB separation is carried out using a laboratory‐scale unit (the FlexSMB‐LSRE®) with six columns, packed with the Chiralpak AD® stationary phase (20 μm). Results presented include the experimental measurement of equilibrium and kinetic data for two very different solvent compositions, a traditional high hydrocarbon content [10%ethanol/90%n‐hexane/0.01% trifluoroacetic acid (TFA)] and a strong polar organic composition (100%ethanol/0.01%TFA). Experimental data, obtained using the two mobile phase compositions, are used to predict and optimize the SMB operation. After selecting 10%ethanol/90%n‐hexane/0.01%TFA as the most appropriate solvent composition, three feed concentrations of racemic flurbiprofen were considered. Using 40 g/l of racemic flurbiprofen feed solution, the purities for both outlet streams were above 99.4%, the productivity was 13.1 gfeed/(Lbedh), and a solvent consumption of 0.41 Lsolvent/gfeedwas achieved. Chirality, 2011. © 2011 Wiley‐Liss, Inc.

Country
Portugal
Keywords

Pharmaceutical intermediate, Chromatography, Ethanol, Phenylcarbamates, Preparative chiral separation, Stereoisomerism, Flurbiprofen enantiomers, Simulated moving bed chromatography, Flurbiprofen, Linear Models, Solvents, Hexanes, Trifluoroacetic Acid, Computer Simulation, Amylose, Chiral separations, Chromatography, High Pressure Liquid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Top 10%
Related to Research communities
Energy Research