
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Proton Conductivity Study of a Fuel Cell Membrane with Nanoscale Resolution

pmid: 17274094
The present work demonstrates that EC-AFM is a very useful new tool for identification and spatially resolved characterization of proton conductivity at the membrane surface in comparison with topography, however it does not provide insight into the 3D pore structure within the membrane. The results are consistent with those of conventional macroscopic measurements, confirming the reliability of the method. It will allow careful analysis of the homogeneity, the nature and the consequences of microphase separation as well as the effect of humidity on novel alternative membranes, and it will thus be essential for tailored developments of new materials for fuel-cell membranes. The present initial work is followed up with further experiments which provide a more complete understanding of the proton conductivity of the polymers, determine the influence of relative humidity on the size of conductive regions and investigate the reproducibility of the results.
- University of Stuttgart Germany
- Esslingen University of Applied Sciences Germany
- Esslingen University of Applied Sciences Germany
- Università degli studi di Salerno Italy
- German Aerospace Center Germany
fuel cell, electrochemistry, membranes, proton conducting materials, scanning probe microscopy
fuel cell, electrochemistry, membranes, proton conducting materials, scanning probe microscopy
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).45 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
