Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ChemPhotoChemarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ChemPhotoChem
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-UPMC
Article . 2024
License: CC BY
Data sources: HAL-UPMC
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL AMU
Article . 2024
License: CC BY
Data sources: HAL AMU
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL Descartes
Article . 2024
License: CC BY
Data sources: HAL Descartes
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
univOAK
Article . 2024
Data sources: univOAK
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Transparent Near‐IR Dye‐Sensitized Solar Cells: Ultrafast Spectroscopy Reveals the Effects of Driving Force and Dye Aggregation

Authors: Kurucz, Mate; Nikolinakos, Ilias; Soueiti, Jimmy; Baron, Thibaut; Grifoni, Fionnuala; Naim, Waad; Pellegrin, Yann; +3 Authors

Transparent Near‐IR Dye‐Sensitized Solar Cells: Ultrafast Spectroscopy Reveals the Effects of Driving Force and Dye Aggregation

Abstract

AbstractIn the context of developing transparent near‐IR absorbing dye‐sensitized solar cells, diketopyrrolopyrrole (DPP) cyanine dyes have recently emerged as an alternative to strongly aggregating linear cyanines. In our efforts to increase both the power conversion efficiency (PCE) and the average visible transmittance (AVT), a thienylated version, called TB202, that shows a red‐shifted absorption with respect to our champion dye TB207 was designed. However, the lower energy LUMO level of TB202 brings along a lower driving force (−ΔG) for carrier injection, which we recently identified as the main parameter limiting the PCE to 1.5 % in the best device conditions. In the present paper, we publish a detailed account of the effect of the de‐aggregating cheno‐deoxycholic acid (CDCA) for both TB207 and TB202. Both transient absorption (TAS) and fluorescence up‐conversion (FLUPS) data are presented, which allow to quantitively compare the effect of −ΔG and the CDCA concentration, in terms of the kinetic competition of ensemble averaged carrier injection and monomer‐to‐aggregate energy transfer (ET) rates. A comprehensive picture emerges on how ET is reduced by higher CDCA concentrations, leading in the best device conditions to injection efficiencies in the range of 65 % for TB207 and only 35 % for TB202.

Country
France
Keywords

[PHYS]Physics [physics], Transient absorption, Pyrrolopyrrole cyanines, Broadband fluorescence up-conversion, 530, 620, [PHYS] Physics [physics], Charge transfer, Ultrafast, Energy transfer, [CHIM] Chemical Sciences, [CHIM]Chemical Sciences, Chimie/Autre, Near-IR DSSC, Molecular dimers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Green
hybrid
Related to Research communities
Energy Research