
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Scaling‐Up of Bio‐Oil Upgrading during Biomass Pyrolysis over ZrO2/ZSM‐5‐Attapulgite

pmid: 30912622
AbstractEx situ catalytic biomass pyrolysis was investigated at both laboratory and bench scale by using a zeolite ZSM‐5‐based catalyst for selectively upgrading the bio‐oil vapors. The catalyst consisted of nanocrystalline ZSM‐5, modified by incorporation of ZrO2 and agglomerated with attapulgite (ZrO2/n‐ZSM‐5‐ATP). Characterization of this material by means of different techniques, including CO2 and NH3 temperature‐programmed desorption (TPD), NMR spectroscopy, UV/Vis microspectroscopy, and fluorescence microscopy, showed that it possessed the right combination of accessibility and acid–base properties for promoting the conversion of the bulky molecules formed by lignocellulose pyrolysis and their subsequent deoxygenation to upgraded liquid organic fractions (bio‐oil). The results obtained at the laboratory scale by varying the catalyst‐to‐biomass ratio (C/B) indicated that the ZrO2/n‐ZSM‐5‐ATP catalyst was more efficient for bio‐oil deoxygenation than the parent zeolite n‐ZSM‐5, producing upgraded bio‐oils with better combinations of mass and energy yields with respect to the oxygen content. The excellent performance of the ZrO2/n‐ZSM‐5‐ATP system was confirmed by working with a continuous bench‐scale plant. The scale‐up of the process, even with different raw biomasses as the feedstock, reaction conditions, and operation modes, was in line with the laboratory‐scale results, leading to deoxygenation degrees of approximately 60 % with energy yields of approximately 70 % with respect to those of the thermal bio‐oil.
- Karlsruhe Institute of Technology Germany
- University Museum Utrecht Netherlands
- Energy Institute United Kingdom
- IMDEA Energy Institute Spain
- King Juan Carlos University Spain
biomass, Geography & travel, 910, ddc:910, pyrolysis, catalytic, Taverne, bio-oil, info:eu-repo/classification/ddc/910, ZSM-5
biomass, Geography & travel, 910, ddc:910, pyrolysis, catalytic, Taverne, bio-oil, info:eu-repo/classification/ddc/910, ZSM-5
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).19 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
