
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Influence of Reaction Conditions on Hydrothermal Carbonization of Fructose

pmid: 34542237
AbstractHydrothermal carbonization is a powerful way to convert cellulosic waste into valuable platform chemicals and carbonaceous materials. In this study, to optimize the process, fructose was chosen as the carbon precursor and the influence of reaction time, acid catalysis, feed gas and pressure on the conversion products is evaluated. 5‐hydroxymethylfurfural (HMF) is produced in high amounts in relatively short time. Both strong and weak acids accelerate fructose conversion. Levulinic acid (LevA) formation is faster than that of hydrothermal (HT) carbon in acidic conditions. Strong acid catalysts should be considered to target preferentially LevA production, whereas milder conditions should be preferred for HMF production. Moreover, a slight initial overpressure of the reactor is always beneficial in terms of conversion. FT‐IR and 13C ss‐NMR spectroscopy and SEM showed that HT carbon evolves through time from a furanic‐based structure with alkylic linkers to an increasingly cross‐linked condensed structure. MALDI‐ToF mass spectrometry showed the existence of a series of oligomers in a mass range within 650 Da and 1500 Da formed by condensation of repeating units.
- Queen Mary University of London United Kingdom
- Tohoku University Japan
- Imperial College London United Kingdom
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).30 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
