Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ChemSusChemarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ChemSusChem
Article . 2024 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Boosting the O2‐to‐H2O2 Selectivity Using Sn‐Doped Carbon Electrocatalysts: Towards Highly Efficient Cathodes for Actual Water Decontamination

Authors: Zhao, Lele; Mazzucato, Marco; Lanzalaco, Sonia; Parnigotto, Mattia; Khan, Anastassiya; Zitolo, Andrea; Cabot Julià, Pere Lluís; +2 Authors

Boosting the O2‐to‐H2O2 Selectivity Using Sn‐Doped Carbon Electrocatalysts: Towards Highly Efficient Cathodes for Actual Water Decontamination

Abstract

AbstractThe high cost and often complex synthesis procedure of new highly selective electrocatalysts (particularly those based on noble metals) for H2O2 production are daunting obstacles to penetration of this technology into the wastewater treatment market. In this work, a simple direct thermal method has been employed to synthesize Sn‐doped carbon electrocatalysts, which showed an electron transfer number of 2.04 and outstanding two‐electron oxygen reduction reaction (ORR) selectivity of up to 98.0 %. Physicochemical characterization revealed that this material contains 1.53 % pyrrolic nitrogen, which is beneficial for the production of H2O2, and ‐C≡N functional group, which is advantageous for H+ transport. Moreover, the high volume ratio of mesopores to micropores is known to favor the quick escape of H2O2 from the electrode surface, thus minimizing its further oxidation. A purpose‐made gas‐diffusion electrode (GDE) was prepared, yielding 20.4 mM H2O2 under optimal electrolysis conditions. The drug diphenhydramine was selected for the first time as model organic pollutant to evaluate the performance of an electrochemical advanced oxidation process. In conventional electro‐Fenton process (pH 3), complete degradation was achieved in only 15 min at 10 mA cm−2, whereas at natural pH 5.9 and 33.3 mA cm−2, almost overall drug removal was reached in 120 min.

Country
Spain
Keywords

Carbó, Cathodes, Coal, Electrocatàlisi, Càtodes, Àrees temàtiques de la UPC::Enginyeria química::Química física::Electroquímica, Electro-Fenton process, SnC nanoparticles, Water treatment, Electrocatalysis, Hydrogen peroxide, Gas-diffusion electrode, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
hybrid
Related to Research communities
Energy Research