Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecological Monograph...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ecological Monographs
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.17169/re...
Other literature type . 2025
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Radboud Repository
Article . 2025
Data sources: Radboud Repository
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research Collection
Article . 2025
License: CC BY
Research Collection
Article . 2025
Data sources: Datacite
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Plant diversity facets differentially affect energy dynamics in grasslands depending on trophic contexts

Authors: Oksana Y. Buzhdygan; Britta Tietjen; Jana S. Petermann; Nico Eisenhauer; Jes Hines; Bernhard Schmid; Selina Baldauf; +7 Authors

Plant diversity facets differentially affect energy dynamics in grasslands depending on trophic contexts

Abstract

AbstractThe strength of biodiversity–ecosystem functioning (BEF) relationships varies within and across studies, depending on the investigated ecosystem function and diversity facet (e.g., species richness or functional composition), limiting our ability to translate BEF results into recommendations for management and conservation. The variability in BEF relationships is particularly high when considering complex multitrophic communities and can be explained by food web contexts. Here we examine how different plant diversity facets affect biomass stocks and energy flows of each trophic group depending on their position in the trophic network. We used coupled aboveground–belowground multitrophic networks of energy dynamics, assembled across the experimental gradients of grassland plant species richness, functional diversity, and presence of plant functional groups. We compared the strengths of these diversity effects between trophic groups, trophic levels, aboveground versus belowground subnetworks, and types of ecosystem functions. Plant species richness, functional trait diversity, and the presence of legumes and grasses were influential drivers of ecosystem energetics. The effects of plant species richness across the food web often operated through mechanisms of plant functional‐trait diversity. The effects of plant species richness attenuated across trophic levels. Legume presence strengthened the top‐down control (predation) of primary consumers. We found an overall mismatch in the strength of diversity effects on flows versus stocks. Some trophic groups showed even contrasting direction in responses of their stocks and flows to plant diversity. This indicates that plant diversity constrains consumer functioning by means other than only altered consumer biomass. Responses of flows and stocks to plant diversity differed between trophic groups, and aboveground versus belowground parts. Individual stocks and energy flows were responsive to different biodiversity facets, highlighting the importance of the explicit consideration of individual functions and diversity facets for a comprehensive multitrophic understanding. For example, legume presence increased aboveground processes but reduced plant carbon uptake and belowground plant production. Plant communities containing legumes lost more biomass to herbivores, had faster decomposition, and channeled less energy to soil detritus. An important implication of these results is that targeted grassland management would profit from focusing on specific plant diversity facets depending on the ecosystem function or service of interest.

Countries
Netherlands, Germany, Switzerland
Keywords

energy flows, 570, Ecology, functional trait diversity, energy dynamics, Plantspecies richness, plant functional composition, Plant functional composition, Trophic levels, Ecosystem functions, Biomass stocks, aboveground and belowground food web, Energy flows, Biowissenschaften; Biologie, Trophic networks, plant species richness, ecosystem functions, Aboveground and belowground food web, biomass stocks, Aboveground and belowground food web; Biomass stocks; Ecosystem functions; Energy dynamics; Energy flows; Functional trait diversity; Plant functional composition; Plantspecies richness; Trophic groups; Trophic levels; Trophic networks, Trophic groups, Functional trait diversity, Energy dynamics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid