Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Technologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Technology
Article . 2014 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Increased Capacity of LiNi1/3Co1/3Mn1/3O2–Li[Li1/3Mn2/3]O2 Cathodes by MnOx‐surface Modification for Lithium‐Ion Batteries

Authors: Wang J.; He X.; Kloepsch R.; Wang S.; Hoffmann B.; Jeong S.; Yang Y.; +1 Authors

Increased Capacity of LiNi1/3Co1/3Mn1/3O2–Li[Li1/3Mn2/3]O2 Cathodes by MnOx‐surface Modification for Lithium‐Ion Batteries

Abstract

AbstractMnOx‐surface‐modified Li1.2Ni0.4/3Co0.4/3Mn1.6/3O2 cathode materials have been prepared by solid‐state reaction with varying post‐annealing temperatures. The MnOx coating layers are homogeneous and crystalline with a thickness of 10 nm. Below a current rate of 0.1 C and in the voltage range of 2.0–4.8 V, the MnOx‐modified material, which has been post‐annealed at 300 °C, shows high discharge capacities of 308, 320, and 363 mAh g−1 at 20, 40, and 60 °C, respectively. Meanwhile, this sample shows good rate capability that can deliver discharge capacities of 278 and 178 mAh g−1, respectively, at 1 C and 10 C, both tested at 20 °C. However, the modified sample displays more serious capacity degradation compared to the pristine sample. The significantly higher extent of the transition metal dissolution from the modified sample is proved by compositional analysis. Cycling performance could be improved by replacing the conventional electrolyte with an ionic‐liquid‐based electrolyte.

Countries
China (People's Republic of), China (People's Republic of), Italy
Related Organizations
Keywords

NI, Lithium-ion batteries, Energy storage, LI1.2NI0.13CO0.13MN0.54O2, OXIDE, 600, Molybdenum oxide, Ionic liquids, CO ELECTRODES, HIGH-VOLTAGE, CELLS, ELECTROCHEMICAL PERFORMANCE, RATE CAPABILITY, Solid-state reaction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%
Related to Research communities
Energy Research