
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Lanthanum Manganite Perovskites with Ca/Sr A‐site and Al B‐site Doping as Effective Oxygen Exchange Materials for Solar Thermochemical Fuel Production

AbstractPerovskite oxides have recently been proposed as promising redox intermediates for solar thermochemical splitting of H2O and CO2, offering the benefit of significantly reduced operating temperatures. We present a systematic experimental screening of doped lanthanum manganites within the composition space La1−x(Ca,Sr)xMn1−yAlyO3 and identify several promising redox materials. In particular, La0.6Sr0.4Mn0.6Al0.4O3 and La0.6Ca0.4Mn0.6Al0.4O3 boast a five‐ to thirteen‐fold improvement in the reduction extent compared to the state‐of‐the‐art material CeO2 in the temperature range 1200–1400 °C. The materials are shown to be capable of splitting CO2 into CO fuel when isothermally cycled between low‐pO2 and high‐pCO2 environments at 1240 °C and to approach full reoxidation in CO2 with temperature swings as low as 200 °C, with mass‐specific fuel yields up to ten times that of CeO2. The underlying material thermodynamics are investigated and used to explain the favorable redox behavior.
- Biomolécules : Conception, Isolement, Synthèse France
- Institut Jean Le Rond d'Alembert France
- Florida Southern College United States
- University of Zurich Switzerland
- ETH Zurich Switzerland
540 Chemistry, Department of Chemistry
540 Chemistry, Department of Chemistry
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).126 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
