
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Microbial Fuel Cells for Organic‐Contaminated Soil Remedial Applications: A Review

AbstractEfficient noninvasive techniques are desired for repairing organic‐contaminated soils. Bioelectrochemical technology, especially microbial fuel cells (MFCs), has been widely used to promote a polluted environmental remediation approach, and applications include wastewater, sludge, sediment, and soil remediation. Soil MFC remediation has been of significant concern in recent years, and thus, several aspects, including reactor configuration, electrode materials, soil conductivity, mass transfer, and microbial activity, are reviewed. Recent studies and key issues of soil MFCs and perspectives of organic‐contamination remedial application are summarized, with the aim of assisting environmental scholars and engineers to gain a comprehensive understanding of MFC remediation. Insights are also offered on how to extend applications to help soil MFC remediation technology to advance and be applied in the future on a large scale.
- Wageningen University & Research Netherlands
- Nankai University China (People's Republic of)
- Nankai University China (People's Republic of)
- South China Agricultural University China (People's Republic of)
- Agro-Environmental Protection Institute China (People's Republic of)
microbial fuel cells, biocatalysis, electrochemistry, soil remediation, environmental chemistry
microbial fuel cells, biocatalysis, electrochemistry, soil remediation, environmental chemistry
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).76 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
