
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Hydrogenation of the Liquid Organic Hydrogen Carrier Compound Monobenzyl Toluene: Reaction Pathway and Kinetic Effects

AbstractLiquid organic hydrogen carriers (LOHCs) are an interesting option for storing hydrogen through a reversible chemical reaction. The catalytic hydrogenation reaction was studied for the carrier material monobenzyl toluene. GC analysis was used to quantify the components occurring in a complex reaction mixture. It was shown that the hydrogenation reaction proceeds predominantly by stepwise hydrogenation of the aromatic ring. As the molecular structure of monobenzyl toluene is formally the combination of a xylene and a toluene ring, two possible reaction pathways have been evaluated: hydrogenation of the mono‐substituted side ring (toluene) and di‐substituted main ring (xylene). Intermediates for both pathways were detected during the reaction. Concerning the isomeric structure of benzyl toluene, the fastest hydrogenation was observed for the para species. Isomeric mixtures were hydrogenated the slowest.
- University of Erlangen-Nuremberg Germany
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).68 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
