
Found an issue? Give us feedback
Energy Technology
Article . 2017 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
Interface Engineering of electron Transport Layer‐Free Planar Perovskite Solar Cells with Efficiency Exceeding 15 %

Feiyue Huang; Lin Gu; Shao Jin; Qiyao Guo; Hui Xu; Jihuai Wu; Yunfang Huang; Yuelin Wei; Xiaomin Yang; Dan Luo;
Abstract
AbstractA high‐performance electron transport layer (ETL)‐free planar fluorine‐doped tin oxide (FTO)/perovskite/hole‐transport material/Au solar cell was prepared. We revealed that a plasma‐cleaning pretreatment for FTO substrates could significantly improve the quality of perovskite films, leading to the promotion of charge separation, an increase in the electron‐transport rate, and a decrease in the recombination reaction at the FTO/perovskite interface. Finally, the efficiency of the cells was greatly improved. A power conversion efficiency of over 15 % and a fill factor of 0.68 were achieved under AM 1.5G 100 mW cm−2 irradiation without the use of a compact n‐type metal‐oxide blocking layer.
Related Organizations
- Huaqiao University China (People's Republic of)
- Huaqiao University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
14
Top 10%
Average
Top 10%
bronze
Beta
Fields of Science (4) View all
Fields of Science
Related to Research communities
Energy Research