Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Technologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Technology
Article . 2018 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Advanced Metal Oxide@Carbon Nanotubes for High‐Energy Lithium‐Ion Full Batteries

Authors: Hai Ming; Hong Zhou; Xiayu Zhu; Songtong Zhang; Pengcheng Zhao; Meng Li; Limin Wang; +1 Authors

Advanced Metal Oxide@Carbon Nanotubes for High‐Energy Lithium‐Ion Full Batteries

Abstract

AbstractA strategy to synthesize a Fe3O4@carbon nanotube (CNT) composite with high tap density of 1.22 g cm−3 and electronic conductivity of 4.1 S cm−1 is developed. The Fe3O4@CNT composite exhibits an extremely high capacity of over 1263 mAh g−1, even after 125 cycles at a current density of 100 mA g−1. Additionally, a lithium‐ion full battery of Fe3O4@CNT|LiNi0.5Mn1.5O4 with an energy density of 2283 Wh kganode−1 (381 Wh kgcathode−1) is successfully configured. After optimization of the work voltage windows and electrolyte additives, it has a capacity retention of 71 % after more than 400 cycles. Using this synthetic strategy, additional metal oxide@CNT (e.g., Co3O4, MnO2, CuO, ZnO) composites with high lithium storage capability are explored, and their electrochemical differences versus the cathode of LiNi0.5Mn1.5O4 are investigated in light of their superior performances. Applying this type of metal oxide‐based composite in full cells is a significant step to the development of high‐energy lithium‐ion batteries and to further applications in current sodium‐ion batteries.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%
Related to Research communities
Energy Research