
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Energy Savings Potential of a Novel Radiative Cooling and Solar Thermal Collection Concept in Buildings for Various World Climates

AbstractA novel radiative cooling and solar collection concept is presented, and the combination of these two technologies and its energy integration in residential and commercial buildings is evaluated. This innovative concept, herein named Radiative Collector and Emitter (RCE), allows for supplying both cooling and Domestic Hot Water (DHW) demands. First, the RCE concept is introduced by presenting its background, with special attention to the overlapping and switching between radiative cooling and solar thermal collection. Then the DHW and cooling demands for four building typologies, two residential and two commercial, are compared with the energy production of the RCE. The analysis is performed for representative cities of the world climates according to Köppen‐Geiger classification. The RCE concept showed suitability in some of the studied cities (San Francisco, Cape Town, Johannesburg, London, and Ottawa) with C (temperate) and D (continental) climates in residential and tertiary buildings.
- University of Lleida Spain
- University of Lleida Spain
Radiative Collector and Emitter (RCE), Radiative cooling
Radiative Collector and Emitter (RCE), Radiative cooling
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).24 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
