Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Technologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Technology
Article . 2018 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Operational Stability of a LOHC‐Based Hot Pressure Swing Reactor for Hydrogen Storage

Authors: Holger Jorschick; Stefan Dürr; Andreas Bösmann; Peter Wasserscheid; Peter Wasserscheid; Patrick Preuster;

Operational Stability of a LOHC‐Based Hot Pressure Swing Reactor for Hydrogen Storage

Abstract

AbstractApart from hydrogen logistics, stationary hydrogen storage applications using Liquid Organic Hydrogen Carrier (LOHC) systems are also of significant interest. In contrast to the traditional use of separate hydrogenation and dehydrogenation reactors, our so‐called oneReactor technology offers the advantages of a simpler storage unit layout and high dynamics in switching from hydrogen charging to hydrogen release. Here we report repeated hydrogenation and dehydrogenation cycles with one batch of liquid carrier for LOHC stability tests under defined hydrogenation and dehydrogenation conditions. We demonstrate up to 13 hydrogenation/dehydrogenation cycles over a total of 405 h of operation including two long dehydrogenation sequences over weekends. In general, longer dehydrogenation runs, i. e. exposure of the LOHC to catalyst at low hydrogen pressure and elevated temperatures (>280 °C), showed negative effects on both activity of the subsequent cycles and by‐product formation. Concerning catalyst activity and hydrogen productivity, stable productivity was achieved (within 3 to 9 cycles) under all conditions tested. Longer hydrogenation runs led to significantly higher stability of the reaction system.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 1%
Top 10%
Top 10%
Related to Research communities
Energy Research