
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Negative Emission Energy Production Technologies: A Techno‐Economic and Life Cycle Analyses Review

Negative emission technologies (NETs) are of growing importance for society to meet the atmospheric carbon levels required to maintain global temperatures under sustainable limits. A wide range of NETs have been proposed, but there are limited NET assessments that integrate life cycle analysis (LCA) and techno‐economic analysis (TEA). This Review gathers NET TEA/LCA findings and compares their costs and greenhouse gas emissions. Eight different NET‐producing transportation fuels and power‐generation technologies are considered: anaerobic digestion (lignocellulosic), fermentation, torrefaction, combustion, fast pyrolysis, gasification, and hydrothermal liquefaction. Most of these technologies sequester carbon either as carbon dioxide or as biochar. Some are carbon negative by virtue of avoided or displaced emissions. Overall, results indicate that NET energy production costs range between $20 and $80 GJ−1 and have emissions from −400 to 100 kg CO2,eq GJ−1. These results suggest that there are potential tradeoffs to consider when developing NETs. These results also show that future TEA/LCA studies of NETs are needed to decrease their uncertainty and improve their technology readiness level.
- Iowa State University United States
- Iowa State University United States
- Lawrence Berkeley National Laboratory United States
- Lawrence Berkeley National Laboratory United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).27 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
