
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Tetrahydrofuran as an Oxygen Donor Additive to Enhance Stability and Reproducibility of Perovskite Solar Cells Fabricated in High Relative Humidity (50%) Atmosphere

In sequential deposition method of lead‐halide perovskite material, the PbI2 layer morphology and remnant PbI2 play an important role in enhancing the power conversion efficiency (PCE) of the perovskite solar cell. However, humidity levels affect the PbI2 and perovskite film morphology, resulting in defect sites and recombination centers on the surface and within the bulk of the material, thus impeding the overall device performance and stability. To address this, incorporation of tetrahydrofuran (THF) additive in PbI2–dimethylformamide (DMF) precursor solution is reported, to improve the quality of PbI2 thin films and to prevent the water interaction directly with PbI2 under high humidity environments. The O‐donor THF interacts with PbI2, resulting in a homogeneous, dense, and pinhole‐free layer as compared with the PbI2 layer without additive. The perovskite layer so obtained from the pinhole‐free PbI2 layer is compact, resulting in a significant reduction of defects/traps. The device is fabricated with modified perovskite in ≈50% humidity atmosphere, resulting in 15% efficiency with high reproducibility. Moreover, the THF‐modified non‐encapsulated perovskite device retains 80% PCE after exposure to 50% relative humidity for 20 days. A strategy to fabricate perovskite solar cells, with reproducible efficiency in high humidity atmosphere viable for large‐scale production, is demonstrated.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
