
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Spatially Allocating Life Cycle Water Use for US Coal‐Fired Electricity across Producers, Generators, and Consumers

There are water consequences across every life cycle stage of coal‐fired electricity consumption, from production and processing to combustion, which have not been studied with regional specificity. There is often a spatial decoupling between where coal is produced and processed versus where it is combusted for power generation, complicating any analysis to estimate the life cycle water implications of electricity consumption. Furthermore, electricity generated by coal‐fired power plants can be consumed within its own balancing authority or exported to another balancing authority. This analysis spatially resolves the water consumed and water withdrawn for coal mining, coal preparation, and power plant cooling from 1) where the coal is mined to where the coal is burned for power production and 2) where the electricity is generated to where the electricity is consumed. Although the largest portion of coal consumed came from the Northern Great Plains province, coal from this region consumes the least amount of water for mining and preparation compared with other provinces. Water withdrawals for cooling power plants within each balancing authority are driven by cooling technology. Due to the interconnected grid, there can be differences between attributing water footprint at the producer level versus the consumer level.
- Georgia Institute of Technology United States
- Carnegie Institution for Science United States
- Georgia Institute of Technology United States
- University of California System United States
- Carnegie Institution for Science United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
