Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Technology
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2021
Data sources: CNR ExploRA
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dielectric Micro‐ and Sub‐Micrometric Spacers for High‐Temperature Energy Converters

Authors: Bellucci Alessandro; Sabbatella Gianfranco; Girolami Marco; Mastellone Matteo; Serpente Valerio; Mezzi Alessio; Kaciulis Saulius; +7 Authors

Dielectric Micro‐ and Sub‐Micrometric Spacers for High‐Temperature Energy Converters

Abstract

Dielectric microspacers (DMS) are important components in thermal energy converters. Engineered DMS are fabricated and characterized on different substrates by depositing patterned ceramic thin films of alumina (Al2O3) and zirconia (ZrO2) with a thickness ranging from 0.3 to 3 μm. Both Al2O3 and ZrO2 films are electrically and thermally optimized, finding zirconia more suitable as a thermal and electrical insulating material at high temperature, whereas the developed DMS are morphologically analyzed by scanning electron microscopy. The analysis of thermal simulations carried out with COMSOL Multiphysics allows identifying the best geometrical constraints for each single structure, whereas simulations carried out by the Fluent software allow identifying the best arrangement for DMS, leading to a solution with optimized pattern in terms of amount and spatial distribution so to achieve the required electrical and thermal insulation for practical applications. DMS are integrated within thermionic‐photovoltaic devices to be validated experimentally, and enhanced electron emission measurements are successfully performed at a cathode temperature up to 1350 °C to verify the operational feasibility and potential of this technology.

Country
Italy
Keywords

dielectric materials; high-temperature energy converters; insulators; microspacers; thermionic energy converters, high-temperature energy converters, thermionic energy converters, 600, Settore CHIM/03 - CHIMICA GENERALE E INORGANICA, dielectric materials, insulators, microspacers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Top 10%
Funded by
Related to Research communities
Energy Research