Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Technologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Technology
Article . 2023 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Solar–Thermal Conversion Properties of Bilayered Porous Solar Absorbers Fabricated by Mixed Halloysite/Palygorskite Clays

Authors: Nan Wang; Juan Jia; Wenxiao Mu; Hanxue Sun; Jiyan Li; Zhaoqi Zhu; Weidong Liang;

Solar–Thermal Conversion Properties of Bilayered Porous Solar Absorbers Fabricated by Mixed Halloysite/Palygorskite Clays

Abstract

In recent years, solar absorbers have received widespread attention, however, large‐scale preparation is difficult to achieve for many absorbers, and the raw materials are expensive. Halloysite (HNTs) and palygorskite (PAL) have the advantage of abundant reserves and low prices. Herein, solar absorbers with bilayer and porous features are prepared from mixed clays of HNTs and PAL; further studies focused on the solar–thermal conversion efficiency of the absorbers. The mixed clays are gelated by aqueous polymerization of acrylamide and N, N′‐methylene bisacrylamide, then the surface of the gel is carbonized to obtain the double‐layer solar absorbers (F‐HNTs/PAL). The F‐HNTs/PAL shows excellent thermal stability with a weight‐loss ratio of 13% at 1,000 °C, good mechanical properties with a compressed strength of up to 200 KPa at 80% strain, abundant porosity with an adsorption pore volume of 0.057 cm3 g−1, and low thermal conductivity (0.206 W m−1 K−1). Under 1 sun illumination, the F‐HNTs/PAL has a higher vapor rate of 1.215 kg m−2 h−1 that equals 84% solar‐to‐vapor efficiency, which is much more than 57% of F‐HNTs prepared by the same methods, but the F‐HNTs/PAL shows unique thermal stability and mechanical property.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Related to Research communities
Energy Research