Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Technologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Technology
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermal Storage: From Low‐to‐High‐Temperature Systems

Authors: Sebastian Gamisch; Moritz Kick; Franziska Klünder; Julius Weiss; Eric Laurenz; Thomas Haussmann;

Thermal Storage: From Low‐to‐High‐Temperature Systems

Abstract

Different technologies of cold and heat storages are developed at Fraunhofer ISE. Herein, an overview of ongoing research for sensible and latent thermal energy storages is provided. Phase change emulsions are developed supported by molecular dynamic simulations. A narrow temperature range of the phase change is crucial for the applicability. By the simulations, a nucleation additive is identified that reduces supercooling by up to 9 K. The long‐term stability of phase change material is investigated by degradation experiments. Thermal cycling and ageing of materials at elevated temperature are applied. The change of melting enthalpy and characteristic temperatures are evaluated. Among erythritol, adipic acid, and myristic acid, the smallest degradation is observed for the latter. For sensible storage, the reduction of thermal oil by low‐cost filler materials and their compatibility is investigated at elevated temperature. It can be concluded that the materials are compatible up to 320 °C. At the component level, different macroencapsulations and immersed heat exchangers are tested for phase change materials. The investigated configurations achieve similar values of thermal power during (dis‐)charge. Compared to water as storage medium, the capacity increases by a factor of 2.2 and 4.1 for the macroencapsulation and the immersed heat exchanger, respectively.

Country
Germany
Powered by OpenAIRE graph
Found an issue? Give us feedback