Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Technologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Technology
Article . 2024 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Biopolymer Binders for Low‐Temperature Operation of TiNb2O7 Anode in Li‐Ion Batteries

Authors: Rita Leones; Martin Hantusch; Sebastian Pazek; Ling Ding; Ronny Buckan; Sebastian Maletti; Evgenia Dmitrieva; +1 Authors

Biopolymer Binders for Low‐Temperature Operation of TiNb2O7 Anode in Li‐Ion Batteries

Abstract

The widespread use of lithium‐ion batteries underlines the criticality of a more sustainable cell fabrication. Here, three biopolymers gelatin, pectin, and deoxyribonucleic acid (DNA) are investigated as binders for the TiNb2O7 anode material in Li cells in a temperature range between 0 and 60 ºC and compared to conventional binder polyvinylidene fluoride (PVDF). The use of biopolymers is motivated by their own environmental friendliness and the possibility to implement an aqueous electrode processing. A specific charge capacity of at least 200 mAh g−1 is found for all binders at 0 °C when testing the cycling performance of TiNb2O7 at 77.5 mA g−1 (1C rate). However, low‐rate cycling at 60 °C shows decreasing capacity for all biopolymers due to the swelling effect and continuous contact loss to the current collector, what also reflects in lowering the overall Li‐diffusion coefficient. This effect becomes less pronounced at 0 °C and high current densities, making biopolymers competitive with commercial PVDF. The electrodes with DNA binder demonstrate overall the most stable performance, arising from the biopolymer intactness and a thin solid–electrolyte interface layer. At 0 °C, the electrode with DNA provides 150 mAh g−1 at 775 mA g−1 for at least 500 discharge–charge cycles.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
hybrid
Related to Research communities
Energy Research