Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Technologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Technology
Article . 2024 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Strain Relaxation Characterization on Lithium‐ion Batteries at Different States of Charge and Charging Rates

Authors: Jifeng Song; Tao Ren; Yuanlong Li; Juntao Wang; Zhengye Yang; Kashif Ali;

Strain Relaxation Characterization on Lithium‐ion Batteries at Different States of Charge and Charging Rates

Abstract

The strain on the cell casing can serve as an indicator of the internal state of the cell. Monitoring strain during the charging and discharging processes aids in determining optimal charging and discharging operations, thereby maximizing the lifespan and performance of the battery. Herein, strain dynamic curves are obtained for lithium‐ion batteries at low, medium, and high charge and discharge rates by affixing strain gauges to individual cells. The investigation delves into parameters such as strain relaxation time, maximum strain, and residual strain at various charge rates and states of charge. The experimental findings reveal distinctive patterns, indicating that the strain curve during high‐rate charging resembles a second‐order function, exhibiting more pronounced fluctuations as the rate increases. This stands in stark contrast to the strain exponential decay observed during conventional medium and low‐rate charging. Notably, the strain residual resulting from high‐rate charging proves to be several times higher than that observed in low‐rate charging, hinting at potential differences in the dynamic distribution of lithium ions within batteries during high‐rate versus medium‐low‐rate charging modes.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average