Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Technologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Technology
Article . 2025 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Stimulated Photocatalytic Plasmonic–TiO2 Nanohybrid for Ecoremediation and Energy: Recent Advances and Challenges

Authors: Omar Mbrouk; Hoda R. Galal; Walied A. A. Mohamed; Mohamed Sabry Abdel‐Mottaleb; Hoda Hafez;

Stimulated Photocatalytic Plasmonic–TiO2 Nanohybrid for Ecoremediation and Energy: Recent Advances and Challenges

Abstract

Plasmonic photocatalysis represents a highly promising area of research, as it enables the efficient exploitation of a broad spectrum of solar energy. Among the different photocatalysts, titanium dioxide (TiO2) has emerged as a pre‐eminent photocatalyst owing to its remarkable catalytic attributes. Its abundant active sites and high surface‐to‐volume ratio enable synergistic interactions with plasmonic metal nanoparticles, including silver, gold, and palladium, leading to significantly enhanced photocatalytic activity. These hybrid nanostructured materials based on TiO2 photocatalysts have many advances and challenges for many potential applications in environment and energy production. This phenomenon can be attributed to the efficient separation of charge carriers, coupled with the strategic tuning of the photocatalyst's optical response to extend into extended wavelength regions, specifically within the near‐infrared and visible spectra.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research