
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Single‐atom surface anchoring strategy via atomic layer deposition to achieve dual catalysts with remarkable electrochemical performance

doi: 10.1002/eom2.12351
AbstractPt‐Ir catalysts have been widely applied in unitized regenerative fuel cells due to their great activity for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). However, the application of noble metals is seriously hindered by their high cost and low abundance. To reduce the noble metals loading and catalyst cost, the atomic layer deposition is applied to selectively surface anchoring of Ir single atoms (SA) on Pt nanoparticles (NP). With the formation of SA‐NP composite structure, the IrSA‐PtNP catalyst exhibits significantly improved performance, achieving 2.0‐ and 90‐times mass activity by comparison with the benchmark Pt/C catalyst for the ORR and OER, respectively. Density functional theory calculations indicate that the SA‐NP cooperation synergy endows the IrSA‐PtNP catalyst to surpass the bifunctional catalytic activity limit of Pt‐Ir NPs. This work provides a novel strategy for the construction of high‐performing dual catalyst through designing the single atom anchoring on NPs.image
- Shenzhen University China (People's Republic of)
- Western University Canada
- Shenzhen University China (People's Republic of)
- Southern University of Science and Technology China (People's Republic of)
- Southern University of Science and Technology China (People's Republic of)
TJ807-830, Renewable energy sources, Environmental sciences, Pt‐Ir dual catalyst, single atom‐nanoparticle cooperation, atomic layer deposition, electrochemical oxygen reaction, GE1-350
TJ807-830, Renewable energy sources, Environmental sciences, Pt‐Ir dual catalyst, single atom‐nanoparticle cooperation, atomic layer deposition, electrochemical oxygen reaction, GE1-350
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
