Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ EcoMatarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
EcoMat
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
EcoMat
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Platinum Group Metal‐Indium Carbon‐Interstitial Compounds for Hydrogen Production

Authors: Xiaopeng Liu; Ankang Jia; Kezhu Jiang; Ju Huang; Wei Deng; Shuxing Bai;

Platinum Group Metal‐Indium Carbon‐Interstitial Compounds for Hydrogen Production

Abstract

ABSTRACTCarbon‐interstitial compounds of precious metal alloys (Ci‐PMA) have attracted increased attention as effective catalytic materials, but their precise and controllable synthesis remains significant challenges. Herein, we have established a universal approach for the straightforward synthesis of supported Ci‐platinum group metal‐indium alloys (M3InCx, M = Pt, Pd, Ni, x = 0.5 or 1). The control experiment results indicate that the C atoms in Pt3InC0.5 come from the solvent. Furthermore, 0.2 wt.% Pt3InC0.5/SiO2 exhibits excellent catalytic performance for aqueous phase reforming (APR) of methanol (CH3OH) to produce hydrogen, with productivity and turnover frequency of 310.0 −1mol·kgcat·h−1 and 30 126 h−1 at 200°C, which are 1.7 times greater than those of Pt3In/SiO2. The infrared results of CH3OH adsorption reveal that the substantially better performance for APR of CH3OH of Pt3InC0.5/SiO2 than Pt3In/SiO2 is due to its significantly enhanced CH bond dissociation ability. This study not only provides a straightforward and universal approach for the controlled synthesis of Ci‐PMA but also stimulates fundamental research into Ci‐PMA for catalysis and other applications.

Related Organizations
Keywords

Environmental sciences, hydrogen production, TJ807-830, aqueous phase reforming, GE1-350, indium, carbon‐interstitial compound, Renewable energy sources, platinum group metal

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research