Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Progre...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Progress & Sustainable Energy
Article . 2011 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reduction of Cr (VI) in electroplating wastewater and investigation on the sorptive removal by WBAP

Authors: Bhavna A. Shah; Rajesh Singh; Ajay Shah; Nayan B. Patel;

Reduction of Cr (VI) in electroplating wastewater and investigation on the sorptive removal by WBAP

Abstract

AbstractThe aim of the present investigation was to study the removal of total chromium from the electroplating industry effluent using Weathered Basalt Andesite Products (WBAP). The reduction of Cr (VI) to Cr (III) by hydrazinium sulfate (HS) was adopted. The sorbent WBAP before and after sorption, was characterized by FTIR, X‐ray diffraction, SEM, TEM, and TGA methods. The effects of various parameters such as hydronium ion concentration, shaking time, sorbent dose, initial metal ion concentration, and temperature on the removal of Cr (III) from aqueous solution was studied. Thermodynamic parameters (ΔH0, ΔS0, and ΔG0) for the sorption process were evaluated. Freundlich, Langmuir, and Dubinin‐Kaganer‐Radushkevich isotherm models were examined to describe the sorption isotherms. Analysis of sorption results obtained showed that the sorption pattern followed the Freundlich sorption isotherm. Langmuir maximum sorption capacity of WBAP for Cr (III) was found to be 12.07 mg/g. The process follows Pseudo second order rate and surface diffusion is identified as the predominating mechanism. The effluent having average discharge of total chromium 90 mg/L was successfully treated with the same sorbent with a removal of 85.65%. © 2010 American Institute of Chemical Engineers Environ Prog, 2011

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average