Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Progre...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Progress & Sustainable Energy
Article . 2013 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hydrothermal synthesis of platelet β Co(OH)2 and Co3O4: Smart electrode material for energy storage application

Authors: Chapal Kumar Das; Soumen Giri; Debasis Ghosh;

Hydrothermal synthesis of platelet β Co(OH)2 and Co3O4: Smart electrode material for energy storage application

Abstract

Our present work deals with the hydrothermal synthesis of Platelet β Co(OH)2 using cobalt(II) acetate as the metal precursor and ammonia solution as the hydrolyzing agent. Electrochemical capacitive performance was studied through cyclic voltammetry (CV), galvanostatic charge discharge (CCD), and electrochemical impedance spectroscopy (EIS) analyses with 6 M KOH as supporting electrolyte. The Electrochemical characterizations of the β Co(OH)2 in 6M KOH exhibited a maximum specific capacitance of 251 F/g at 2 mV/s scan rate and 228 F/g at 2 A/g constant current density accompanied with high cycle stability. Calcination of the β Co(OH)2 at 330°C leads to the formation of spinal Co3O4 exhibiting an increased specific capacitance of 270 F/g at 2mV/s scan rate and 238 F/g at 2A/g constant current density. © 2013 American Institute of Chemical Engineers Environ Prog, 33: 1059–1064, 2014

Powered by OpenAIRE graph
Found an issue? Give us feedback