Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Progre...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Progress & Sustainable Energy
Article . 2015 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Techno‐economic feasibility study of autonomous hybrid wind and solar power systems for rural areas in Iran, A case study in Moheydar village

Authors: Jun-Ki Choi; Muyiwa S. Adaramola; Abtin Ataei; ChangKyoo Yoo; Mojtaba Biglari; Ehsanolah Assareh; Mojtaba Nedaei;

Techno‐economic feasibility study of autonomous hybrid wind and solar power systems for rural areas in Iran, A case study in Moheydar village

Abstract

In this research, a feasibility study of using a small wind turbine as an integrated system with a solar photovoltaic system and a diesel generator was performed using the HOMER® optimization model. For this purpose three main scenarios have been taken into account. In the first two scenarios the diesel price was considered 0.8 $/L (Scenario 1) and 1.5 $/L (Scenario 2) and no limits were assumed for emissions of diesel generator. The most efficient system in the first scenario consists of one wind turbine (15 kW), a 75 kW generator, 35 batteries, and a 15 kW converter with renewable fraction of 53%. However in the second scenario, 7 kW photovoltaic array was added to the designed optimal hybrid system and thus the renewable fraction was increased to 71%. In the third scenario the limits were specified for the different pollutants using the CAP (Ontario Clean Air Program) standard. It was revealed that the optimal configuration which contains a 75 kW diesel generator, 21 kW photovoltaic array, 75 kW wind turbines, 50 batteries, and a 20 kW converter would be the most economically feasible. Emission analysis revealed that among all of the designed hybrid systems, highest level of CO2 emissions was observed for a stand‐alone diesel system with value of 115,436 kg/yr and the lowest level was observed for the hybrid system in the third scenario with value of 991 kg/yr. Additionally it was proved that the third scenario would be the best option for connecting the system to the grid. © 2015 American Institute of Chemical Engineers Environ Prog, 34: 1521–1527, 2015

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%