
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Techno‐economic feasibility study of autonomous hybrid wind and solar power systems for rural areas in Iran, A case study in Moheydar village

doi: 10.1002/ep.12121
In this research, a feasibility study of using a small wind turbine as an integrated system with a solar photovoltaic system and a diesel generator was performed using the HOMER® optimization model. For this purpose three main scenarios have been taken into account. In the first two scenarios the diesel price was considered 0.8 $/L (Scenario 1) and 1.5 $/L (Scenario 2) and no limits were assumed for emissions of diesel generator. The most efficient system in the first scenario consists of one wind turbine (15 kW), a 75 kW generator, 35 batteries, and a 15 kW converter with renewable fraction of 53%. However in the second scenario, 7 kW photovoltaic array was added to the designed optimal hybrid system and thus the renewable fraction was increased to 71%. In the third scenario the limits were specified for the different pollutants using the CAP (Ontario Clean Air Program) standard. It was revealed that the optimal configuration which contains a 75 kW diesel generator, 21 kW photovoltaic array, 75 kW wind turbines, 50 batteries, and a 20 kW converter would be the most economically feasible. Emission analysis revealed that among all of the designed hybrid systems, highest level of CO2 emissions was observed for a stand‐alone diesel system with value of 115,436 kg/yr and the lowest level was observed for the hybrid system in the third scenario with value of 991 kg/yr. Additionally it was proved that the third scenario would be the best option for connecting the system to the grid. © 2015 American Institute of Chemical Engineers Environ Prog, 34: 1521–1527, 2015
- University of Dayton United States
- Kyung Hee University Korea (Republic of)
- Semnan University Iran (Islamic Republic of)
- Semnan University Iran (Islamic Republic of)
- University of Dayton United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).34 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
