Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao TechnoRep - Faculty ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Progress & Sustainable Energy
Article . 2016 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the identification of optimal utility corridor locations in interplant water network synthesis

Authors: Mahmoud M. El-Halwagi; Patrick Linke; Sabla Y. Alnouri; Sabla Y. Alnouri; Mirko Stijepovic;

On the identification of optimal utility corridor locations in interplant water network synthesis

Abstract

Studies involving the design of interplant water networks have received significant attention over the past few years. Many methods have been developed to assist in obtaining efficient water reuse network design schemes, mainly using fundamental concepts of water integration. Our recent work has presented the importance of considering spatial constraints in the form of utility corridor availability, when identifying cost‐effective interplant water network arrangements in industrial zones (Alnouri et al., [2014]: Clean Technologies and Environmental Policy 16, 1637–1659). This article extends the scope of our previous work by enabling the identification of new corridor locations, which could potentially be used alongside existing utility infrastructure. We present an optimization framework that allows unutilized areas of land within industrial zones to be sectioned off and added as optional transportation channels, together with existing utility corridor regions, in the course of attaining cost‐effective interplant water network designs. The methodology entails that identification of optimal wastewater reuse schemes among various processing entities, by exploring options for enhanced utility corridors. As an illustration, several cases that utilize an assumed layout for an industrial zone have been carried out, in which a number of unutilized regions of land were identified to exist. Several opportunities that allow for potential corridor additions onto existing corridor infrastructure, through the exploitation of unutilized regions of land within the plot, were explored. A number of improvements in the water network designs obtained are highlighted for the different case scenarios that have been investigated, using the proposed approach. © 2016 American Institute of Chemical Engineers Environ Prog, 35: 1492–1511, 2016

Country
Serbia
Keywords

systems engineering, environmental planning, sustainability, environmental policy, wastewater management

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 43
    download downloads 1
  • 43
    views
    1
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
4
Average
Average
Average
43
1