Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Progre...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Progress & Sustainable Energy
Article . 2016 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cathode modification to enhance the performance of in‐situ fenton oxidation in microbial fuel cells

Authors: Addin Salihoudin; Anam Asghar; Wan Mohd Ashri Wan Daud; Abdul Aziz Abdul Raman;

Cathode modification to enhance the performance of in‐situ fenton oxidation in microbial fuel cells

Abstract

Microbial fuel cell (MFC) is a sustainable and energy efficient technology, which uses graphite as cathode for hydrogen peroxide (H2O2) production often with simultaneous power production. Nevertheless, slow kinetics of oxygen reduction reaction (ORR) at the surface of graphite often results in poor performance of MFC. In an attempt to improve the performance of MFC for in‐situ H2O2 production, a treatment of graphite cathode using nitric acid was performed. The treatment was conducted in three steps (i) heat treatment at 450°C for 2 h; (ii) acid treatment with concentrated nitric acid for 5 h; and (iii) drying at 120°C for 2 h. After the treatment, four times increase in surface area of treated cathode (GR‐HA) was observed. Energy‐dispersive X‐ray spectroscopy (EDX) and Fourier transform infrared (FTIR) analysis revealed the presence of nitrogen and quinone based functional groups on the surface of GR‐HA. Cyclic voltammetric (CV) analysis of GR‐HA cathode further confirmed the production of H2O2 at the peak current value of −3.7 mA and on‐set potential of −0.1 V. Following CV analysis, H2O2 production experiments were performed in a dual chamber MFC using GR‐HA as cathode. Maximum 150 mg/L of H2O2 was produced with simultaneous power production of 36.438 mW/m2. Approximately, 25% increase in both H2O2 and power production was observed in the case of G cathode. Subsequently, Fenton oxidation experiments were performed (with GR‐HA and GR‐CA cathodes) to determine the efficacy of in‐situ produced H2O2. This resulted in an increase of 8.28%, 11.04%, and 31.32% in decolorization, chemical oxygen demand (COD), and Total Organic Carbon (TOC) removal efficiency, respectively. © 2016 American Institute of Chemical Engineers Environ Prog, 36: 382–393, 2017

Powered by OpenAIRE graph
Found an issue? Give us feedback