Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Progre...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Progress & Sustainable Energy
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Preparation of NiFe2O4/polythiophene nanocomposite and its enhanced adsorptive uptake of Janus green B and Fuchsin basic from aqueous solution: Isotherm and kinetics studies

Authors: Daud Hussain; M. Fuzail Siddiqui; Tabrez A. Khan;

Preparation of NiFe2O4/polythiophene nanocomposite and its enhanced adsorptive uptake of Janus green B and Fuchsin basic from aqueous solution: Isotherm and kinetics studies

Abstract

AbstractNiFe2O4/polythiophene nanocomposite was synthesized by in situ chemical oxidative polymerization of thiophene in NiFe2O4 nanoparticles presence, whereas NiFe2O4 nanoparticles were prepared via coprecipitation method. Fourier transform infrared (FTIR), X‐ray diffraction (XRD), UV–Visible, and SEM, EDX techniques were used for characterization of the nanocomposite. The effect of various parameters such as adsorbent dose, contact time, initial dye concentration, and initial pH of solution on the adsorption of Janus green B (JG) and Fuchsin basic (FB) onto the nanocomposite was optimized by batch studies. The equilibrium uptake data ascribed well to the Langmuir model with maximum adsorption capacity of 143 and 498 mg/g at 303 K for JG and FB, respectively. The exceptional high adsorption capacity of NiFe2O4/polythiophene nanocomposite for JG and FB was ascribed to π‐π and electrostatic interactions. Kinetics studies pointed out that JG and FB removal followed pseudo‐second order model. The negative values of ΔH° (JG: –47.28; FB: −38.00 kJ/mol) and ΔG° (JG: −9.347 to −6.442; FB: −14.16 to – 12.85 kJ/mol) pointed out the feasibility, spontaneity, and exothermic nature of removal process. Negative value of ΔS° (JG: –0.125; FB: –0.078 kJ/mol) suggested decrease in randomness at the solid/liquid interface. The results showed that NiFe2O4/polythiophene is an appealing adsorbent for the uptake of JG and FB dyes from aquatic environment.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Average
Top 10%
Related to Research communities
Energy Research