
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Investigation of slaughterhouse waste anaerobic digestion in a pilot‐scale mesophilic reactor

doi: 10.1002/ep.13904
AbstractSlaughterhouses generate highly polluted effluents, and if not treated before discharge can cause major adverse environmental and public health impacts. Treatment of this waste by anaerobic digestion can reduce those impacts while producing a potentially valuable source of energy. The purpose of this study was to investigate this process efficiency under pilot operating conditions for a more accurate scaling up. Blood waste from a slaughterhouse was treated in a pilot‐scale digester of 30 dm3 total volume under mesophilic temperature conditions. Operating parameters such as pH, alkalinity, organic loading, volatile fatty acids, biogas composition, total and volatile solids were monitored in order to study the behavior of the fermentation process. The results show that no significant inhibition were caused by the accumulation of volatile fatty acids, due to the high buffering capacity of treated sludge. An efficient reduction of organic matter was obtained with a COD decrease of about 67% within 40 days of fermentation. The biogas produced was of a good quality with high CH4 yields (above 70%) and low CO2 yields, corresponding to a biomethane potential of 225.9 dm3 CH4/kg TVS. Logistic model described accurately the methane production kinetic and enables an easy process scaling up for industrial applications.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
