
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Tungsten oxide‐iodide/poly‐2‐aminobenzenethiol nanocomposite with iodine intercalation as a promising electrode for potentiometric sensing of Pb2+ ions in water

doi: 10.1002/ep.14453
AbstractTungsten oxide‐iodide/poly‐2‐aminobenzenethiol nanocomposite (WO2I2/P2ABT) is created through the introduction of iodine into polymer chains, where iodine serves as an oxidizing agent during the synthesis process. With a highly porous structure, the sensing capabilities of WO2I2/P2ABT for detecting Pb2+ ions are successfully demonstrated, revealing a Nernstian slope of 26.2 mV/decade. This detection is accomplished through a simple potentiometric technique, employing a simple two‐electrode cell setup. To further validate its performance, cyclic voltammetry is conducted using a three‐electrode system, revealing a remarkable sensitivity of 7.2 × 10−5 A M−1 for Pb2+ ions. The nanocomposite sensor's selectivity is rigorously examined by subjecting it to testing in the presence of 0.01 M interfering ions. The results unequivocally demonstrate that the sensor remains unresponsive to these interfering ions, underscoring its remarkable selectivity for Pb2+ ions. Moreover, the sensor's behavior is evaluated under real‐world conditions using natural samples, where, no indications of interference from other ions are observed. This is estimated by the absence of cyclic peaks in the voltammogram, indicating the sensor's unique ability to selectively detect Pb2+ ions without being perturbed by other ions that may be naturally occurring in the samples. These findings emphasize the nanocomposite sensor's potential for a wide array of applications in environmental monitoring and analytical chemistry. Its extraordinary combination of high sensitivity, impeccable selectivity, and robust performance in practical scenarios establishes it as an invaluable tool for detecting Pb2+ ions across various contexts.
- Princess Nourah bint Abdulrahman University Saudi Arabia
- Beni-Suef University Egypt
- Princess Nourah bint Abdulrahman University Saudi Arabia
- Beni-Suef University Egypt
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
