Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Open Access Reposito...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Energy Research
Article . 2007 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The influence of rotary valve distribution systems on the energetic efficiency of regenerative thermal oxidizers (RTO)

Authors: AMELIO, Mario; FLORIO, Gaetano; Morrone P; Senatore S.;

The influence of rotary valve distribution systems on the energetic efficiency of regenerative thermal oxidizers (RTO)

Abstract

On–off valve systems, commonly used in regenerative thermal oxidizer (RTO) plants, generate, during the opening time, a mass flow rate (MFR) which is constant. On the contrary, rotary valve systems, which are increasingly adopted in RTO plants, are characterized by variable MFR profiles. In this work, the energy requirements of two RTO systems, equipped with on–off or rotary valves, were determined using a home-developed numerical code. Energy performances were evaluated by calculating the thermal efficiency and pressure drop within structured or random packed bed RTO systems, at the same mean MFR. The results demonstrated that thermal efficiency was only moderately influenced by the valve system, and is slightly lower for the RTO with on–off valve. On the other hand, the study revealed that energy requirements of all RTO systems were basically unaffected by cycle duration, allowing valve rotational velocity to be freely set to maximize for other technical requirements. On the contrary, pressure drop was greatly influenced by the valve type and increased as variability in MFR function augmented. Moreover, the type of regenerator, structured or random packed bed, affected differently the total energy requirements (basically pumping energy plus auxiliary fuel). Energy requirements of structured and random regenerators were comparable only when volatile organic compounds concentration was lower than typical values encountered in the industrial practise. In other cases, structured regenerators RTO were more competitive. Finally, structured regenerators are usually the best choice when rotating valve distribution systems are adopted. Copyright © 2007 John Wiley & Sons, Ltd.

Country
Italy
Keywords

Fuel Technology, Nuclear Energy and Engineering, Renewable Energy, Sustainability and the Environment, Energy Engineering and Power Technology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Average
Green
gold