Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Energy Research
Article . 2009 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy and exergy analysis of a double absorption heat transformer operating with water/lithium bromide

Authors: H. Martínez; Wilfrido Rivera;

Energy and exergy analysis of a double absorption heat transformer operating with water/lithium bromide

Abstract

In the present study, the first and second law of thermodynamics have been used to analyze in detail the performance of a double absorption (lift) heat transformer operating with the water–lithium bromide mixture. A mathematical model was developed to estimate the coefficient of performance (COP), the exergy coefficient of performance (ECOP), the total exergy destruction in the system (ΨTD) and the exergy destruction (ΨD) in each one of the main components, as a function of the system temperatures, the efficiency of the economizer (EFEC), the gross temperature lift and flow ratio (FR). The results showed that the generator is the component with the highest irreversibilities or exergy destruction contributing to about 40% of the total exergy destruction in the whole system, reason why this component should be carefully designed and optimized. The results also showed that the COP and ECOP increase with increase in the generator, the evaporator and the absorber–evaporator temperatures and decrease with the absorber and condenser temperatures. Finally, it was observed that the COP and ECOP are very dependent of the FR and the economizer efficiency (EFEC) values. Also the optimum operating region of the analyzed system is shown in the present study. Copyright © 2009 John Wiley & Sons, Ltd.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Top 10%
gold