Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Energy Research
Article . 2009 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy and exergy analysis of an experimental single-stage heat transformer operating with the water/lithium bromide mixture

Authors: J. Cerezo; Wilfrido Rivera; H. Martínez;

Energy and exergy analysis of an experimental single-stage heat transformer operating with the water/lithium bromide mixture

Abstract

The first and second law of thermodynamics have been used to analyze the performance of an experimental single-stage heat transformer operating with the water/lithium bromide mixture. Enthalpy coefficients of performance (COP), external coefficients of performance (COPEXT), exergy coefficient of performance (ECOP), exergy destruction or irreversibility in the system and components (I) and the improvement potential (Pot) have been calculated against the gross temperature lift and the main operating temperatures of the system. The results showed that the highest COP, COPEXT and ECOP values are obtained at the highest solution concentrations meanwhile the Pot and the I of the cycle remain almost constant against these parameters. Also it was shown that the COP, COPEXT and ECOP decrease with an increase with the absorber temperature, meanwhile the Pot and the I increase. Moreover, it was observed that in all the cases independently of the operating temperatures of the system, the absorber accounts with most of the half of the total irreversibility in the system. Finally, it was shown that the improvement potential is considerable for the system. Copyright © 2009 John Wiley & Sons, Ltd.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Top 10%
Average
gold