Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Aperta - TÜBİTAK Açı...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aperta - TÜBİTAK Açık Arşivi
Other literature type . 2017
License: CC BY
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Energy Research
Article . 2017 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

1.2 kW beta type Stirling engine with rhombic drive mechanism

Authors: Aksoy, Fatih; Solmaz, Hamit; Cinar, Can; Karabulut, Halit;

1.2 kW beta type Stirling engine with rhombic drive mechanism

Abstract

Summary Because of some advantages such as higher theoretical thermal efficiency, lower pollutant release, working with lower noisy, working with any kind of thermal energy, and having longer life time, Stirling engines receive attentions of academic workers. The development studies related to the drive mechanism as well as the other components of Stirling engine are progressing. In the present study, a beta type Stirling engine with a rhombic-drive mechanism was manufactured and tested. Tests were performed at hot end temperatures of 600 and 800°C for five different stages of charge pressure ranging from 1 to 5 bar with 1 bar increments. Torque and power characteristics of the engine were deduced. The maximum engine torque and power were obtained as 18 Nm and 1215 W at engine speeds of 612 and 722 rpm, respectively, at 4 bar charging pressure. The cyclic work generations of the engine, which is an important parameter indicating the engine performance, were determined as 19, 27, and 25 J corresponding to 1, 3, and 5 bar charging pressures, respectively. In the experiments, the cylinder pressure variation was also measured at various charging pressures. While the charge pressure increases from 1 to 5 bar, the location of the maximum cylinder pressure ranged from 86° to 74° of crankshaft angle, which may have a bit influence on the engine performance. Copyright © 2017 John Wiley & Sons, Ltd.

Country
Turkey
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 4
  • 4
    views
    Data sourceViewsDownloads
    ZENODO40
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
21
Top 10%
Top 10%
Top 10%
4
Green
gold